Rui (Ray) Xu

⊠ ruixu@stanford.edu | rui.ray.xu@usc.edu '• Personal Website: ruixucomp.github.io Google Scholar | Twitter | Linkedin

Research Interests

My research aims to enable sustainable aerospace propulsion through multiscale reacting flow modeling that integrates *ab initio* molecular simulation, chemical kinetic modeling, and turbulence-resolved flow simulations, with the aid of data-driven methods. Specifically, I am interested in sustainable aviation fuel combustion modeling and design pathways, and the underlying reacting flow physics in both current propulsion devices and future carbon-neutral, high-speed vehicles.

Professional Appointments

Assistant Professor, University of Southern California, Los Angeles, CA, USA Department of Aerospace and Mechanical Engineering

Starting 2025

Postdoc, Stanford University & SLAC National Lab, Stanford, CA, USA

2020 - 2024

Department of Chemistry and the PULSE Institute

Advisor: Todd J. Martínez

Postdoc, Stanford University, Stanford, CA, USA

2019 - 2020

Department of Mechanical Engineering

Education

Stanford University, Stanford, CA, USA

2014 - 2019

Ph.D., Mechanical Engineering

Advisor: Hai Wang

Advisor: Hai Wang

Thesis: HyChem – A physics-based approach to modeling real-fuel combustion chemistry [Link]

Northwestern University, Evanston, IL, USA

2012 - 2014

M.S., Mechanical Engineering

Advisor: Jian Cao

Shanghai Jiao Tong University, Shanghai, China

2008 - 2012

B.S., Mechanical Engineering

Research Experience

Postdoctoral Scholar, Stanford University, Stanford, CA, USA

2020 - 2024

Department of Chemistry and the PULSE Institute

Advisor: Todd J. Martínez

- Research direction 1: Quantum chemistry reaction discovery for reacting flows
 - Combining ab initio molecular dynamics with chemical kinetic modeling in the ab initio nanoreactor for fuel combustion, sustainable aviation fuel design, and emission prediction
 - Developing enhanced sampling approaches for efficient computational reaction discovery
 - Exploring nonequilibrium thermodynamics and plasma chemistry in the *ab initio* nanoreactor
- Research direction 2: Multiscale modeling for energy harvesting materials
 - Modeling photo- and mechanical-energy harvesting materials at multiscales
 - Exploring chemistry and mechanics interaction in stress-responsive materials.
 - Modeling photoinduced electrocyclic ring-opening using nonadiabatic molecular dynamics

Advisor: Hai Wang

2019 - 2020

- Research direction 1: Bridging reduced kinetic models with 3D turbulent modeling
 - Developed an ultra-reduced methane combustion kinetic model for high-speed turbulent combustion modeling, including direct numerical simulation (DNS), large-eddy simulation (LES), and one-dimensional turbulence (ODT) modeling
- Research direction 2: Energy materials study using density functional theory (DFT)
 - DFT study of sodium-sulfur battery electrochemistry in collaboration with experimentalists
 - Computational study of interactions between polycyclic aromatic hydrocarbons and metal ions

Graduate Research Assistant, Stanford University, Stanford, CA, USA

Denartment of Mechanical Engineering

2014 - 2019

Advisor: Hai Wang

Department of Mechanical Engineering

- Research direction: Physics-based combustion chemistry model for liquid propulsion fuel
 - Developed and implemented a hybrid chemistry (HyChem) approach for combustion chemistry
 modeling of liquid propulsion and ground transportation fuels, including conventional jet fuels,
 sustainable aviation fuel, rocket propellants, and gasolines
 - Extended the HyChem approach emission modelings such as NO_x and soot (particulate matters)
 - Applied HyChem combustion chemistry models to LES under real engine operating conditions

Honors and Awards

Wiley Computers in Chemistry Outstanding Postdoc Award, ACS Spring 2024	2024
AFOSR Scholar Award, ACTC (American Conference on Theoretical Chemistry) 2022	2022
Combustion Institute Student Travel Award, 11th U.S. National Meeting on Combustion	2019
NSF Student Award, 37 th International Symposium on Combustion	2018
Combustion Institute Student Travel Award, 10th U.S. National Meeting on Combustion	2017
Graduation with highest distinction (Rank 1/87), Shanghai Jiao Tong University	2012
National Scholarship , China Ministry of Education & Shanghai Jiao Tong University	2009

Publications

Journal Articles

Google Scholar | Corresponding author = *

- **23.** <u>R. Xu</u>*, S.S. Dammati, X. Shi, E.S. Genter, Z. Jozefik, M.E. Harvazinski, T. Lu, A.Y. Poludnenko, V. Sankaran, A.R. Kerstein, H. Wang*, Modeling of high-speed, methane-air, turbulent combustion, Part II. Reduced methane oxidation chemistry, *Combustion and Flame*, **263**, 113380, 2024. [*Link*]
- **22.** Z. Jozefik, M.E. Harvazinski*, V. Sankaran, S.S. Dammati, A.Y. Poludnenko, T. Lu, A.R. Kerstein, **R. Xu**, H. Wang, Modeling of high-speed, methane-air, turbulent combustion, Part I. One-dimensional turbulence modeling with comparison to DNS, *Combustion and Flame*, **263**, 113379, 2024.[*Link*]
- **21.** Y. Zhang, W. Dong, **R. Xu**, H. Wang*, Foundational Fuel Chemistry Model 2 *iso*-Butene chemistry and application in modeling alcohol-to-jet fuel combustion, *Combustion and Flame*, **259**, 113168, 2024. [*Link*]

- **20.** A.M. Chang, J. Meisner, <u>R. Xu</u>, T.J. Martínez*, Efficient acceleration of reaction discovery in the *ab initio* nanoreactor: Phenyl radical oxidation chemistry, *The Journal of Physical Chemistry A*, **127**, 9580-9589, 2023.[*Link*]
- **19. R. Xu**, J. Meisner, A.M. Chang, K.C. Thompson, T.J. Martínez*, First principles reaction discovery: From the Schrodinger equation to experimental prediction for methane pyrolysis, *Chemical Science*, **14**, 7447-7464, 2023.[*Link*][*Featured in Chem. Sci. front cover*]
- **18.** Y. Zhang, W. Dong, L.A. Vandewalle, <u>R. Xu</u>, G.P. Smith, H. Wang*, Neural network approach to response surface development for reaction model optimization and uncertainty minimization, *Combustion and Flame*, **251**, 112679, 2023.[*Link*]
- **17.** N. Kateris, **R. Xu**, H. Wang*, HOMO-LUMO energy gaps of complexes of transition metals with single and multi-ring aromatics, *Combustion and Flame*, **257**, 112513, 2023.[*Link*]
- **16.** J. Crane, X. Shi*, **R. Xu**, H. Wang, Natural gas versus methane: ignition kinetics and detonation limit behavior in small tubes, *Combustion and Flame*, **237**, 111719, 2022.[*Link*]
- **15.** C. Wang, Y. Zhang, Y. Zhang, J. Luo, X. Hu, E. Matios, J. Crane, **R. Xu**, H. Wang*, W. Li*, Stable sodium-sulfur electrochemistry enabled by phosphorus-based complexation, *Proceedings of the National Academy of Sciences*, **118**, e2116184118, 2021. [Link]
- **14.** <u>R. Xu</u>*, H. Wang, A physics-based approach to modeling real-fuel combustion chemistry VII. Relationship between speciation measurement and reaction model accuracy, *Combustion and Flame*, **224**, 126-135, 2021.[*Link*]
- **13.** K. Wang, **R. Xu**, C.T. Bowman*, H. Wang, Impact of vitiation on flow reactor studies of jet fuel combustion chemistry, *Combustion and Flame*, **224**, 66-72, 2021.[*Link*]
- 12. R. Xu, C. Saggese, R. Lawson, A. Movaghar, T. Parise, J. Shao, R. Choudhary, J. Park, T. Lu, R.K. Hanson, D.F. Davidson, F.N. Egolfopoulos, A. Aradi, A. Prakash, V.R.R. Mohan, R. Cranknell, H. Wang*, A physics-based approach to modeling real-fuel combustion chemistry VI. Predictive kinetic models of gasoline fuels, Combustion and Flame, 220, 475-487, 2020. [Link]
- **11.** C. Saggese, K. Wan, <u>R. Xu</u>, Y. Tao, C.T. Bowman, J. Park, T. Lu, H. Wang^{*}, A physics-based approach to modeling real-fuel combustion chemistry V. NO_x formation from a typical Jet A, *Combustion and Flame*, **212**, 270-278, 2020.[*Link*]
- **10.** <u>R. Xu</u>*, H. Wang, Principle of large component number in multicomponent fuel combustion a Monte Carlo study, *Proceedings of the Combustion Institute*, **37**, 613-620, 2019.[*Link*]
- **9.** X. Han, M. Liszka, **R. Xu**, K. Brezinsky, H. Wang*, A high pressure shock tube study of pyrolysis of real jet fuel Jet A, *Proceedings of the Combustion Institute*, **37**, 189-196, 2019.[*Link*]
- 8. K. Wang, <u>R. Xu</u>, T. Parise, J. Shao, A. Movaghar, D.J. Lee, J. Park, Y. Gao, T. Lu, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang*, A physics-based approach to modeling real-fuel combustion chemistry IV. HyChem modeling of combustion kinetics of a bio-derived jet fuel and its blends with a conventional Jet A, *Combustion and Flame*, 198, 477-489, 2018.[*Link*]
- 7. Y. Tao, <u>R. Xu</u>, K. Wang, J. Shao, S.E. Johnson, A. Movaghar, X. Han, J. Park, T. Lu, K. Brezinsky, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang*, A physics-based approach to modeling real-fuel combustion chemistry III. Reaction kinetic model of JP10, *Combustion and Flame*, **198**, 466-476, 2018.[*Link*]

- **R. Xu**, K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang, A. Movaghar, D.J. Lee, R. Zhao, X. Han, Y. Gao, T. Lu, K. Brezinsky, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang*, A physics-based approach to modeling real-fuel combustion chemistry II. Reaction kinetic models of jet and rocket fuels, *Combustion and Flame*, **193**, 520-537, 2018. [*Link (featured in the most cited CNF articles collection since 2018)*]
- 5. H. Wang*, R. Xu, K. Wang, C.T. Bowman, R.K. Hanson, D.F. Davidson, K. Brezinsky, F.N. Egolfopoulos, A physics-based approach to modeling real-fuel combustion chemistry I. Evidence from experiments, and thermodynamics, chemical kinetic, and statistical considerations, *Combustion and Flame*, 193, 502-519, 2018.[*Link* (featured in the most cited CNF articles collection since 2018)]
- **4.** L. Esclapez*, P. Ma, E. Mayhew, <u>R. Xu</u>, S. Stouffer, T. Lee, H. Wang, M. Ihme*, Fuel effects on lean blow-out in a realistic gas turbine combustor, *Combustion and Flame*, **181**, 82-99, 2017.[*Link*]
- **3.** C. Liu, R. Zhao, <u>R. Xu</u>, F.N. Egolfopoulos, H. Wang*, Binary diffusion coefficients and non-premixed flames extinction of long-chain alkanes, *Proceedings of the Combustion Institute*, **36**, 1523-1530, 2017. [*Link*]
- **2.** Z. Zhang, H. Ren, <u>R. Xu</u>, N. Moser, J. Smith, E.E. Ndip-Agbor, R. Malhotra, Z.C. Xia, K.F. Ehmann*, J. Cao*, A mixed double-sided incremental forming toolpath strategy for improved geometric accuracy, *Journal of Manufacturing Science and Engineering*, **137**, 051007, 2015.[*Link*]
- **1. R. Xu**, X. Shi, D. Xu, R. Malhotra, J. Cao*, A preliminary study on the fatigue behavior of sheet metal parts formed with accumulative-double-sided incremental forming, *Manufacturing Letters*, **2**, 8-11, 2014. [*Link*]

Manuscript Under Review or In Preparation

- R =Under review | P =In preparation
- **R1.** Y. Liu, **R. Xu**, D.M. Sanchez, T.J. Martínez*, T.J.A. Wolf*, Ultrafast events in electrocyclic ring-opening reactions, under review.
- **P2. R.** Xu, A.M. Chang, E. Pieri, T.J. Martínez*, The *ab initio* nanoreactor: Enabling first-principles reaction discovery across multiscale, in preparation.
- **P1.** D.C. Lee, <u>R. Xu</u>, E.J. Flear, S. Holm, D. Hait, T.J. Martínez*, Y. Xia*, Hijacking mechanochemical intermediates for force-free reactions, in preparation.

Invited Talks and Conference Presentations

- **30. Invited:** Application of the *ab initio* nanoreactor and the nonadiabatic *ab initio* molecular dynamics to photodegradation, *BASF CARA* 10th *Anniversary and Spring Review Meeting*, Berkeley, CA, April, 2024.
- **29.** Advancing aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Aeronautics and Astronautics, Massachusetts Institute of Technology*, April, 2024.
- **28.** Enabling aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical Engineering, Michigan State University*, April, 2024.

- **27.** Multiscale reacting flow: From *ab initio* molecular modeling to continuum flow physics, *Department of Aerospace Engineering*, *Texas A&M University*, March, 2024.
- **26.** Enabling aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical Engineering*, *University of Maryland*, March, 2024.
- **25. Invited:** Bridging the gap between first principles reaction discovery and continuum modeling, *ACS Spring* 2024, New Orleans, LA, March, 2024. [*Poster presentation as the winner of Wiley Computers in Chemistry Outstanding Postdoc Award*]
- **24.** Enabling sustainable aviation and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *School for Engineering of Matter, Transport and Energy, Arizona State University*, March, 2024.
- **23.** Enabling aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical and Aerospace Engineering*, *North Carolina State University*, March, 2024.
- **22.** Enabling sustainable propulsion and clean energy transitions: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical and Industrial Engineering*, *University of Illinois Chicago*, February, 2024.
- **21.** Enabling sustainable propulsion and clean energy transitions: Reacting flow modeling across molecular to continuum scales, *Department of Aerospace and Mechanical Engineering*, *University of Southern California*, January, 2024.
- **20. Invited:** Multiscale first principles reaction discovery for methane pyrolysis, *Physical Chemistry Seminar, Department of Chemistry and Chemical Biology, Rutgers University*, November, 2023.
- **19.** Application of the *ab initio* nanoreactor and the nonadiabatic *ab initio* molecular dynamics to polymer degradation, *BASF CARA Meeting*, Santa Barbara, CA, October, 2023.
- **18.** Automatic first principles reaction discovery from *ab initio* molecular dynamics to chemical kinetics prediction for methane pyrolysis, *ACS Fall 2023*, San Francisco, CA, August, 2023.
- **17.** Enabling sustainable aviation: Reacting flow modeling from molecular scale to device, *Department of Aeronautics and Astronautics, Massachusetts Institute of Technology*, March, 2023.
- **16.** Integrating computational reaction discovery in the *ab initio* nanoreactor with kinetic modeling and sensitivity analysis, 2022 AICHE Annual Meeting, Phoenix, AZ, November, 2022.
- **15.** Computational reaction discovery in the *ab initio* nanoreactor integrated with kinetic modeling and sensitivity analysis, *ACTC* (*American Conference on Theoretical Chemistry*) 2022, Palisades Tahoe, CA, July, 2022. [Lightning talk video]
- **14.** Effect of pyrolysis product species measurement uncertainties on the prediction accuracy of HyChem reaction model A case study on Jet A, ACS Fall 2020 Virtual Meeting, August, 2020.
- **13. Invited:** HyChem approach to modeling real-fuel combustion chemistry: From ignition, flame propagation to emission predictions, *ACS Fall 2020 Virtual Meeting*, August, 2020.
- **12.** Sensitivity of HyChem model accuracy to species measurement uncertainties of fuel pyrolysis, 11th U.S. National Meeting on Combustion, Pasadena, CA, March, 2019.

- **11.** Principle of large component number in multicomponent fuel combustion a Monte Carlo study, 37th International Symposium on Combustion, Dublin, Ireland, August, 2018.
- **10. Invited:** Available HyChem models for major hydrocarbon fuels: JPs for aviation, RPs for space and gasoline for automotive applications, 11th MACCCR (Multi-Agency Coordinating Committee for Combustion Research) Annual Fuel and Combustion Research Review Meeting, Sandia National Laboratories, Livermore, CA, April, 2018.
- 9. Invited: HyChem model details for Air Force real fuels: JP_x and RP_x , 2017 AFOSR/ARO/NSF Basic Combustion Research Review Meeting, Basic Research Innovation and Collaboration Center, Arlington, VA, June, 2017.
- **8.** HyChem model: application to petroleum-derived jet fuels, 10th U.S. National Meeting on Combustion, College Park, MD, April, 2017.
- 7. Evidence supporting a simplified approach to modeling high-temperature combustion chemistry, 10th U.S. National Meeting on Combustion, College Park, MD, April, 2017.
- **6.** Evidence supporting a simplified approach to modeling high-temperature combustion chemistry, HTGL (High-Temperature Gasdynamics Laboratory) Seminar, Department of Mechanical Engineering, Stanford University, April, 2017.
- **5.** HyChem approach to combustion chemistry of jet fuels, 2017 TFSA (Thermal & Fluid Sciences Affiliates) and Sponsors Conference, Stanford University, February, 2017.
- **4.** A comparative study of combustion chemistry of conventional and alternative jet fuels with hybrid chemistry approach, *55*th *AIAA Aerospace Sciences Meeting*, Grapevine, TX, January, 2017.
- **3.** HyChem approach to combustion chemistry of jet fuels, *HTGL Seminar, Department of Mechanical Engineering, Stanford University*, December, 2016.
- **2.** HyChem model: A real fuel combustion chemistry approach, *Center for Combustion Energy, Tsinghua University*, Beijing, China, June, 2016.
- 1. A mixed toolpath strategy for improved geometric accuracy and higher throughput in double-sided incremental forming, *ASME Manufacturing Science and Engineering Conference*, Detroit, MI, June, 2014.

Teaching Experience

Martínez group subgroup leader/lecturer, Stanford University

2021 - 2024

- Excited state dynamics subgroup
 - Lecture series: Quantum and Classical Dynamics
 - Topics: Introduction to time dependent Schrodinger equation; Density operator and Wigner transformation; Erhenfest dynamics; Numerical integration and velocity verlet
- Nanoreactor and Machine learning subgroup
 - Lecture series: Reaction Kinetics and Rate Theory
 - Topics: Gas phase collition theory; Transition state theory; Unimolecular reactions, Lindamann mechanism and Hinshelwood theory; RRKM theory
- Summer school lecturer
 - Lecture: Classical Dynamics and Symplectic Integrators

Teaching Certificate, Stanford Scientific Teaching Summer Institute2022Guest lecturer, Stanford University2019Course: ME 371 Combustion Fundamental (Guest lecture on real-fuel combustion chemistry)2018Teaching Assistant, Stanford University2018Course: ME 371 Combustion Fundamental (Problem sessions and two guest lectures)

Mentorship Experience

Garrett Kukier, Ph.D. candidate in Theoretical Chemistry, Stanford University	2023 – present
 Project: Computational study of dioxetane dissociation mechanochemistry 	
Soren Holm, Ph.D. in Theoretical Chemistry, Stanford University	2021 - 2024
• Thesis: The dynamics and mechanisms of molecular reactions under tension	
Alexander M. Chang, Ph.D. in Theoretical Chemistry, Stanford University	2020 - 2024
 Thesis: Advancing automated reaction discovery through novel acceleration techn molecular dynamics 	niques for <i>ab initio</i>
Nikolaos Kateris, Ph.D. in Mechanical Engineering, Stanford University	2018 - 2020
• Thesis: Alkali polysulfide phosphorus complexation batteries : a quantum chemis cal study	stry electrochemi-
Kevin Wan, Ph.D. in Mechanical Engineering, Stanford University	2017 - 2020
• Thesis: Characterization of NO_x and soot in premixed stagnation flames	
Yue Zhang, Ph.D. in Mechanical Engineering, Stanford University	2016 – 2022

Service

Conference Session Chair/Presider

 Session Presider, ACS Fall 2023, COMP Division, Quantum Chemistry Session 	2023
 Session Chair, Western States Section Combustion Meeting, Nanomaterials/Soot section 	2020

• Thesis: Neural network assisted combustion chemistry reaction model optimization and uncertainty

Journal Reviewer

minimization

Combustion and Flame; Proceedings of the Combustion Institute; Progress in Energy and Combustion Science; Applications in Energy and Combustion Science; Combustion Science and Technology; The Journal of Physical Chemistry; Journal of Chemical Theory and Computation; Fuel; Fuel Processing Technology; Energy; Applied Energy; International Journal of Hydrogen Energy; Case Studies in Thermal Engineering; Journal of the Energy Institute; International Journal of Environmental Research and Public Health

Conference Proceeding Reviewer

International Symposium on Combustion, ASME Turbo Expo

Organizations

• The Combustion Institute; AIAA; ACS (COMP & ENFL); ASME; AICHE